19

Linearly generated sequences and applications

In this chapter, we develop some of the theory of linearly generated se-
quences. As an application, we develop an efficient algorithm for solv-
ing sparse systems of linear equations, such as those that arise in the
subexponential-time algorithms for discrete logarithms and factoring in
Chapter 16. These topics illustrate the beautiful interplay between the arith-
metic of polynomials, linear algebra, and the use of randomization in the
design of algorithms.

19.1 Basic definitions and properties

Let F' be a field, let V' be an F-vector space, and consider an infinite sequence
S = (050,051,052, . .),

where a; € V fori=0,1,2.... We say that S is linearly generated (over
F) if there exist scalars ag, . ..,ar_1 € F such that the following recurrence
relation holds:

k—1
Akt = Zajaj+i (for 1 =10,1,2,...).
j=0

In this case, all of the elements of the sequence S are determined by the initial
segment «p, . .., ar_1, together with the coefficients ay, . . ., ap_1 defining the
recurrence relation.

The general problem we consider is this: how to determine the coefficients
defining such a recurrence relation, given a sufficiently long initial segment
of S. To study this problem, it turns out to be very useful to rephrase the
problem slightly. Let g € F[X] be a polynomial of degree, say, k, and write

423

424 Linearly generated sequences and applications

9= Z?:o ngj. Next, define

k
g*x5S:= Zgjozj.
5=0

Then it is clear that S is linearly generated if and only if there exists a
non-zero polynomial g such that

(X'g)xS =0 (fori=0,1,2,...). (19.1)
Indeed, if there is such a non-zero polynomial g, then we can take

ao := —(90/9x), a1 :=—(91/9%), ---» ar—1:= —(gk—1/9r)

as coefficients defining the recurrence relation for S. We call a polynomial g
satisfying (19.1) a generating polynomial for S. The sequence S will in
general have many generating polynomials. Note that the zero polynomial is
technically considered a generating polynomial, but is not a very interesting
one.

Let G(S) be the set of all generating polynomials for S.

Theorem 19.1. G(S) is an ideal of F[X].

Proof. First, note that for any two polynomials f, g, we have (f + g) xS =
(f xS) + (g x S)—this is clear from the definitions. It is also clear that
for any ¢ € F and f € F[X], we have (¢f) xS = ¢ (f *S). From these
two observations, it is immediately clear that G(.5) is closed under addition
and scalar multiplication. It is also clear from the definition that G(S) is
closed under multiplication by X; indeed, if (X'f)*.S = 0 for all i > 0, then
certainly, (X/(Xf)) xS = (X1 f) %S =0 for all i > 0. But any non-empty
subset of F[X] that is closed under addition, multiplication by elements of
F, and multiplication by X is an ideal of F[X] (see Exercise 9.27). O

Since all ideals of F[X] are principal, it follows that G(S) is the ideal of
F[X] generated by some polynomial ¢ € F[X]—we can make this polyno-
mial unique by choosing the monic associate (if it is non-zero), and we call
this polynomial the minimal polynomial of S. Note that S is linearly
generated if and only if ¢ # 0.

We can now restate our main objective as follows: given a sufficiently
long initial segment of a linearly generated sequence, determine its minimal
polynomial.

Ezxample 19.1. Of course, one can always define a linearly generated se-
quence by simply choosing an initial sequence «q, a1, ..., ar_1, along with

19.1 Basic definitions and properties 425

the coefficients gg, ..., gx—1 of a generating polynomial g := go + ¢1X+-- -+
gk,lxk_l + X*. One can enumerate as many elements of the sequence as
one wants by using storage for k elements of V| along with storage for the
coefficients of g, as follows:

(/807 cee 76]6*1) — <Oé(), ey ak*l)
repeat
output Sy
B =350 9i6;
(607 ce. 7616—1) — (/317 ceey 5]47—175,)

forever

Because of the structure of the above algorithm, linearly generated se-
quences are sometimes also called shift register sequences. Also observe
that if F' is a finite field, and V is finite dimensional, the value stored in
the “register” (f,...,k—_1) must repeat at some point, from which it fol-
lows that the linearly generated sequence must be ultimately periodic (see
definitions above Exercise 4.8). O

Example 19.2. Linearly generated sequences can also arise in a natural
way, as this example and the next illustrate. Let E := F[X]/(f), where
f € F[X] is a monic polynomial of degree ¢ > 0, and let o be an element
of E. Consider the sequence S := (1,a,a?,---) of powers of a. For any
polynomial g = Z?:o g;%) € F[X], we have

k
gxS=> gjol = g(a).
§=0

Now, if g(a) = 0, then clearly (X'g)xS = a’g(a) = 0 for alli > 0. Conversely,
if (X'g) xS = 0 for all i > 0, then in particular, g(a) = 0. Thus, g is a
generating polynomial for S if and only if g(a) = 0. It follows that the
minimal polynomial ¢ of S is the same as the minimal polynomial of « over
F, as defined in §17.5. Furthermore, ¢ # 0, and the degree m of ¢ may be

characterized as the smallest positive integer m such that 1,c,...,a™

are
linearly dependent; moreover, as E has dimension £ over F', we must have

m</{. O

Ezxample 19.3. Let V be a vector space over F' of dimension ¢ > 0, and let
7:V — V be an F-linear map. Let 3 € V, and consider the sequence S :=
(ag,1,...), where o; = 7(3); that is, ag = 3, a1 = 7(8), az = 7(7(B)),

426 Linearly generated sequences and applications

and so on. For any polynomial g = Z?:o g;X’ € F[X], we have

k
g*S =) g7 (B),
7=0
and for any ¢ > 0, we have

k k
(Xig) * S = ZngHj(ﬁ) =7t <Z ngj(ﬁ)> =71i(g*xS).
=0 J=0
Thus, if g« S = 0, then clearly (Xig)xS = 7i(gxS) = 7%(0) = 0 for all i > 0.
Conversely, if (X’g) xS = 0 for all i > 0, then in particular, gx S = 0. Thus,
g is a generating polynomial for S if and only if g x S = 0. The minimal
polynomial ¢ of S is non-zero and its degree m is at most ¢; indeed, m may be
characterized as the least non-negative integer such that g, 7(53),...,7™(3)
are linearly dependent, and since V has dimension ¢ over F', we must have
m < /.

The previous example can be seen as a special case of this one, by taking
V to be E, 7 to be the a-multiplication map on FE, and setting 8 to 1. O

The problem of computing the minimal polynomial of a linearly generated
sequence can always be solved by means of Gaussian elimination. For exam-
ple, the minimal polynomial of the sequence discussed in Example 19.2 can
be computed using the algorithm described in §18.2. The minimal polyno-
mial of the sequence discussed in Example 19.3 can be computed in a similar
manner. Also, Exercise 19.3 below shows how one can reformulate another
special case of the problem so that it is easily solved by Gaussian elimination.
However, in the following sections, we will present algorithms for computing
minimal polynomials for certain types of linearly generated sequences that
are much more efficient than any algorithm based on Gaussian elimination.

EXERCISE 19.1. Show that the only sequence for which 1 is a generating
polynomial is the “all zero” sequence.

EXERCISE 19.2. Let S = (ag,a1,...) be a sequence of elements of an F-
vector space V. Further, suppose that S has non-zero minimal polynomial
0.
(a) Show that for any polynomials g,h € F[X], if ¢ = h (mod ¢), then
gxS=hxS.
(b) Let m := deg(¢). Show that if ¢ € F[X] and (X’g) xS = 0 for

1=0,...,m — 1, then g is a generating polynomial for S.

19.1 Basic definitions and properties 427

EXERCISE 19.3. This exercise develops an alternative characterization lin-
early generated sequences. Let S = (zp,21,...) be a sequence of elements
of F'. Further, suppose that S has minimal polynomial ¢ = Z}nzo ijj with
m > 0 and ¢, = 1. Define the matrix

20 21 Zmei
A= - 2o o e pmxm
o1 Zm 't Zom-—o9
and the vector
w:=(Zm, ..., 2m_1) € FIX™,
Show that
v={(—cg,...,—Cm_1) € FXM

is the unique solution to the equation
vA = w.

Hint: show that the rows of A are linearly independent by making use of
Exercise 19.2 and the fact that no polynomial of degree less than m is a
generating polynomial for S.

EXERCISE 19.4. Suppose that you are given ag,...,ax—1 € F and
20,---,2k—1 € F. Suppose that for all ¢ > 0, we define

k-1
Rh+i *= E AjZj4i-
J=0

Given n > 0, show how to compute z, using O(len(n)k?) operations in F.

EXERCISE 19.5. Let V' be a vector space over F', and consider the set V>
of all infinite sequences (ag, a1, ...), where the «; are in V. Let us define
the scalar product of g € F[X] and S € V**° as

g-S=(g*8,(Xg) xS, (X%g) % S,...) € V>,

Show that with this scalar product, V**° is an F[X]-module, and that a
polynomial g € F[X] is a generating polynomial for S € V** if and only if
g-S=0.

428 Linearly generated sequences and applications

19.2 Computing minimal polynomials: a special case

We now tackle the problem of computing the minimal polynomial of a lin-
early generated sequence from a sufficiently long initial segment.

We shall first address a special case of this problem, namely, the case
where the vector space V is just the field F'. In this case, we have

S = (Zo, 21522y .),

where z; € F for:=0,1,2,....

Suppose that we do not know the minimal polynomial ¢ of S, but we
know an upper bound M > 0 on its degree. Then it turns out that the
initial segment zg, 21, ... 2op7_1 completely determines ¢, and moreover, we
can very efficiently compute ¢ given the bound M and this initial segment.
The following theorem provides the essential ingredient.

Theorem 19.2. Let S = (zp,21,...) be a sequence of elements of F, and
define the reversed formal Laurent series

o
2= zX D e F(x71),

i=0
whose coefficients are the elements of the sequence S. Then for any g € F[X],
we have g € G(S) if and only if gz € F[X]. In particular, S is linearly
generated if and only if z is a rational function, in which case, its minimal
polynomial is the denominator of z when expressed as a fraction in lowest
terms.

Proof. Observe that for any polynomial g € F[X] and any integer i > 0,
the coefficient of X~ in the product gz is equal to X'g S— just look
at the formulas defining these expressions! It follows that g is a generating
polynomial for S if and only if the coefficients of the negative powers of X in
gz are all zero, which is the same as saying that gz € F[X]|. Further, if g # 0
and h := gz € F[X], then deg(h) < deg(g)—this follows simply from the fact
that deg(z) < 0 (together with the fact that deg(h) = deg(g) + deg(z)). All
the statements in the theorem follow immediately from these observations.
O

By virtue of Theorem 19.2, we can compute the minimal polynomial ¢ of S
using the algorithm in §18.5.2 for computing the numerator and denominator
of a rational function from its reversed Laurent series expansion. More
precisely, we can compute ¢ given the bound M on its degree, along with
the first 2M elements zp,...,zo17_1 of S, using O(M?) operations in F.
Just for completeness, we write down this algorithm:

19.8 Computing minimal polynomials: a more general case 429
1. Run the extended Euclidean algorithm on inputs
a:=%M and b:= zonM*1 4 xPM2 oy ZoM -1,

and let s’,t be as in Theorem 18.7, using r* := M and t* := M.
2. Output ¢ :=t'/le(t').

The characterization of linearly generated sequences provided by Theo-
rem 19.2 is also very useful in other ways. For example, suppose the field
F' is finite. As we already saw in Example 19.1, any linearly generated se-
quence S := (29, 21, . ..), where the z; are in F', must be ultimately periodic.
However, Theorem 19.2, together with the result of Exercise 18.13, tells us
much more; for example, if the minimal polynomial ¢ of S is not divisible
by X, then S is purely periodic with period equal to the multiplicative order

of [X]y € (F[X]/(¢))"

19.3 Computing minimal polynomials: a more general case

Having dealt with the problem of finding the minimal polynomial of a se-
quence S of elements of F', we address the more general problem, where the
elements of S lie in a vector space V over F. We shall only deal with a
special case of this problem, but it is one which has useful applications:

e First, we shall assume that V' has finite dimension ¢ > 0 over F.

e Second, we shall assume that the sequence S = (ag, a1, ...) has full
rank, by which we mean the following: if the minimal polynomial ¢
of S over F' has degree m, then the vectors ay, ..., q;,—1 are linearly
independent. The sequences considered in Examples 19.2 and 19.3
are of this type.

e Third, we shall assume that F' is a finite field.

The Dual Space. To develop the theory behind the approach we are
going to present, we need to discuss the dual space Dp(V') of V (over F),
which consists of all F-linear maps from V into F'. We may sometimes refer
to elements of Dp(V') as projections. Now, as was discussed in §15.2, if
we fix an ordered basis 71,...,7 for V, the elements of V are in one-to-
one correspondence with the coordinate vectors F1* where the element
a1y1 + ... 4+ agyp € V corresponds to the coordinate vector (ai,...,as) €
F1%¢_ The elements of Dp(V) are in one-to-one correspondence with F**1,
where the map m € Dp(V) corresponds to the column vector whose jth
coordinate is 7(y;), for j = 1,...,£. It is natural to call the column vector
corresponding to 7 its coordinate vector. A projection m € Dp(V') may

430 Linearly generated sequences and applications

be evaluated at a point 6 € V by taking the product of the coordinate vector
of § with the coordinate vector of 7.

One may also impose a vector space structure on Dp(V), in a very natural
way: for m, 7" € Dp(V), the map m + 7’ sends § € V to (d) + 7'(4), and
for ¢ € F, the map cm sends § € V to em(d). By the observations in the
previous paragraph, D (V') is an F-vector space of dimension /; indeed, the
sum and scalar multiplication operations on Dp (V') correspond to analogous
operations on coordinate vectors.

One last fact we need about the dual space is the following:

Theorem 19.3. Let V be an F-vector space of finite dimension ¢ > 0. For
any linearly independent vectors 61,...,0m € V, and any ay,...,a, € F,
there exists m € Dp(V') such that w(0;) = a; fori=1,...,m.

Proof. Fix any ordered basis for V', and let M be the m x £ matrix whose ith
row is the coordinate vector of §; with respect to this ordered basis. Let v
be the m x 1 column vector whose ith coordinate is a;. As the §; are linearly
independent, the rows of M must also be linearly independent. Therefore,
the F-linear map that sends w € F1 to Mw € F™ ! is surjective. It
follows that any solution w to the equation v = Mw is the coordinate
vector of a map m € Dp(V) that satisfies the requirements of the theorem.
Od

That completes our digression on the dual space. We now return to the
problem of computing the minimal polynomial ¢ of the linearly generated
sequence S = (ap, aq,...). Assume we have a bound M on the degree of ¢.
As we are assuming S has full rank, we may assume that M < ¢. For any 7 €
Dr(V), we may consider the projected sequence Sp = (m(a), (1), ...).
Observe that ¢ is a generating polynomial for Sr; indeed, for any polynomial
g € F[X], we have g x Sy = m(g xS), and hence, for all i > 0, we have
(Xip) x Sy = 7((Xip) x S) = 7(0) = 0. Let ¢, € F[X] denote the minimal
polynomial of S;. Since ¢, divides any generating polynomial of S, and
since ¢ is a generating polynomial for Sy, it follows that ¢, is a divisor of
¢.

This suggests the following algorithm for efficiently computing the mini-
mal polynomial of S:

19.8 Computing minimal polynomials: a more general case 431

Algorithm MP:

g — 1€ F[X]
repeat
choose m € Dp(V) at random
compute the first 2M terms of the projected sequence S
use the algorithm in §19.2 to compute the minimal polynomial
¢ of Sy
g < lem(g, ¢r)
until g% 5 =0
output g

A few remarks on the above procedure are in order:

e in every iteration of the main loop, g is the least common multiple of
a number of divisors of ¢, and hence is itself a divisor of ¢;

e under our assumption that S has full rank, and since g is a monic
divisor of ¢, if g xS = 0, we may safely conclude that g = ¢;

e under our assumption that F' is finite, choosing a random element 7
of Dp(V) amounts to simply choosing at random the entries of the
coordinate vector of 7, relative to some ordered basis for V;

e we also assume that elements of V are represented as coordinate
vectors, so that applying a projection m € Dp(V) to a vector in V
takes O(¢) operations in F’;

e similarly, adding two elements of V', or multiplying an element of V'
times a scalar, takes O(¢) operations in F.

Based on the above observations, it follows that when the algorithm halts,
its output is correct, and that the cost of each loop iteration is O(MY)
operations in F. The remaining question to be answered is this: what is
the expected number of iterations of the main loop? The answer to this
question is O(1), which leads to a total expected cost of Algorithm MP of
O(MY) operations in F'.

The key to establishing that the expected number of iterations of the main
loop is constant is provided by the following theorem.

Theorem 19.4. Let S = (o, aq,...) be a linearly generated sequence over
the field F', where the «; are elements of a vector space V' of finite dimension
¢ > 0. Let ¢ be the minimal polynomial of S over F, let m := deg(¢), and
assume that S has full rank (i.e., ag,...,am—1 are linearly independent).
Under the above assumptions, there exists a surjective F-linear map o :
Dr(V) — F[X|<m such that for all m € Dp(V), the minimal polynomial ¢

432 Linearly generated sequences and applications

of the projected sequence Sy := (m(ap), m(av1),...) satisfies

_ ¢
ged(o(m), ¢)

Recall that F'[X] <y, denotes the m-dimensional vector space of polynomials

O

in F[X] of degree less than m.

Proof. While the statement of this theorem looks a bit complicated, its proof
is quite straightforward, given our characterization of linearly generated
sequences in Theorem 19.2 in terms of rational functions. We build the
linear map o as the composition of two linear maps, oy and o7.

Let us define the map

oo: Dp(V)— F(x™)

We also define the map o7 to be the ¢g-multiplication map on F((X~1)), that
is, the map that sends z € F(X™!)) to ¢ -z € F(X™')). The map o is just
the composition 0 = 01 0 gg. It is clear that both oy and oy are F-linear
maps, and hence, so is o.

First, observe that for # € Dp(V), the series z := og(m) is the series
associated with the projected sequence Sy, as in Theorem 19.2. Let ¢, be
the minimal polynomial of S;. Since ¢ is a generating polynomial for .S,
it is also a generating polynomial for S;. Therefore, Theorem 19.2 tells us
that

h:=o0(r)=¢ -z € FXl<m,

and that ¢, is the denominator of z when expressed as a fraction in lowest
terms. Now, we have z = h/¢, and it follows that ¢, = ¢/ ged(h, ¢) is this
denominator.

Second, the hypothesis that ag,...,q;,—1 are linearly independent, to-
gether with Theorem 19.3, implies that dimp(img(op)) > m. Also, ob-
serve that op is an injective map (indeed, it is surjective as well). There-
fore, dimp(img(o)) > m. In the previous paragraph, we observed that
img(o) C F[X]<m, and since dimp(F[X|<;) = m, we may conclude that
img(o) = F[X]<m. That proves the theorem. O

Given the above theorem, we can analyze the expected number of itera-
tions of the main loop of Algorithm MP.

First of all, we may as well assume that the degree m of ¢ is greater than
0, as otherwise, we are sure to get ¢ in the very first iteration. Let my,..., 7

19.8 Computing minimal polynomials: a more general case 433

be the random projections chosen in the first s iterations of Algorithm MP.
By Theorem 19.4, the polynomials o(71), ..., o(ms) are uniformly and inde-
pendently distributed over F[X]<,, and we have g = ¢ at the end of loop
iteration s if and only if ged(¢p, o(71),...,0(ms)) = 1.

Let us define A?(s) to be the probability that ged (o, f1,..., fs) = 1, where
fi,..., fs are randomly chosen from F'[X|<,,. Thus, the probability that we
have g = ¢ at the end of loop iteration s is equal to A}@(S). While one
can analyze the quantity A?}(s), it turns out to be easier, and sufficient for
our purposes, to analyze a different quantity. Let us define A}(s) to be the
probability that ged(f1,..., fs) = 1, where fi,..., fs are randomly chosen
from F[X]<p,. Clearly, A?(s) > AR (s).

Theorem 19.5. If F' is a finite field of cardinality q, and m and s are
positive integers, then we have

AR(s)=1=1/¢""+ (¢ —1)/¢"™.

Proof. For any positive integer n, let U,, be the set of all tuples of polynomials
(f1,---, fs) € FIX|Z; with ged(f1,...,fs) = 1, and let u,, = |U,]|. First, let
h be any monic polynomial with & := deg(h) < n. The set U, of all s-
tuples of polynomials of degree less than n whose ged is h is in one-to-one
correspondence with U,_j, via the map that sends (fi,...,fs) € Uy to
(fi/h,..., fs/h) € Un_g. As there are ¢* possible choices for h of degree
k, we see that the set V,, ;, consisting of tuples (f1,...,fs) € F[X]Z; with
deg(ged(f1, ..., fs)) = k, has cardinality ¢"u,,_;. Every non-zero element of
F[X]Z; appears in exactly one of the sets V,, x, for k =0,...,n — 1. Taking
into account the zero polynomial, it follows that

n—1
¢ =14 ¢ uny, (19.2)
k=0
which holds for all n > 1. Replacing n by n — 1 in (19.2), we obtain
n—2
qs("fl) =1+ Z w1, (19.3)
k=0

which holds for all n > 2, and indeed, holds for n = 1 as well. Subtracting
q times (19.3) from (19.2), we deduce that for n > 1,

qsn _ qsn—s—H =14u, —q,
and rearranging terms:

Uy = qsn o qsn—s—i-l +q— 1.

434 Linearly generated sequences and applications

Therefore,
AR (s) = um/¢"™ =1 - 1/¢°"" + (¢ — 1)/¢*"™. O

From the above theorem, it follows that for s > 1, the probability P, that
Algorithm MP runs for more than s loop iterations is at most 1/¢*~%. If T
is the total number of loop iterations, then

ET] =Y PT>il=1+Y P <1+> /¢ =1+ -1-=0(1).

i>1 s>1 s>1 =

Let us summarize all of the above analysis with the following:

Theorem 19.6. Let S be a sequence of elements of an F-vector space V' of
finite dimension £ > 0 over F', where F is a finite field. Assume that S is
linearly generated over F with minimal polynomial ¢ € F[X] of degree m, and
that S has full rank (i.e., the first m elements of S are linearly independent).
Then given an upper bound M on m, along with the first 2M elements of
S, Algorithm MP correctly computes ¢ using an expected number of O(MF)
operations in F.

We close this section with the following observation. Suppose the se-
quence S is of the form (3, 7(8),7%(8),...), where 3 € V and 7: V — V is
an F-linear map. Suppose that with respect to some ordered basis for V, el-
ements of V are represented as elements of F1*¢ and elements of D (V) are
represented as elements of F**1. The linear map 7 also has a corresponding
representation as a matrix A € F! so that evaluating 7 at a point « in
V' corresponds to multiplying the coordinate vector of a0 on the right by A.
Now, suppose 8 € V has coordinate vector b € F1*¢ and that 7 € Dp(V)
has coordinate vector ¢” € F1. Then if S is the sequence of coordinate
vectors of the elements of S, we have

S = (bAHX, and S, = (bAcT),.

This more concrete, matrix-oriented point of view is sometimes useful; in
particular, it makes quite transparent the symmetry of the roles played by
G and 7 in forming the projected sequence.

EXERCISE 19.6. If |F| = ¢ and ¢ € F[X] is monic and factors into monic
irreducible polynomials in F'[X] as ¢ = p* - - - pS", show that

T

A?O) _ H(1 _ q—deg(m)) >1— Zq—deg(m)_
=1

i=1
From this, conclude that the probability that Algorithm MP terminates

19.4 Solving sparse linear systems 435

after just one loop iteration is 1 — O(m/q), where m = deg(¢). Thus, if ¢
is very large relative to m, it is highly likely that Algorithm MP terminates
after just one iteration of the main loop.

19.4 Solving sparse linear systems

Let V be a vector space of finite dimension ¢ > 0 over a finite field F', and
let 7:V — V be an F-linear map. The goal of this section is to develop
time- and space-efficient algorithms for solving equations of the form

T(y) =6; (19.4)

that is, given 7 and 0 € V, find v € V satisfying (19.4). The algorithms we
develop will have the following properties: they will be probabilistic, and
will use an expected number of O(¢2) operations in F, an expected number
of O(¢) evaluations of 7, and space for O(¢) elements of F'. By an “evaluation
of 7,” we mean the computation of 7(«) for some o € V.

We shall assume that elements of V' are represented as coordinate vectors
with respect to some fixed ordered basis for V. Now, if the matrix rep-
resenting 7 with respect to the given ordered basis is sparse, having, say,
¢1+o() non-zero entries, then the space required to represent 7 is ¢1+o()
elements of F, and the time required to evaluate 7 is ¢1t°(1) operations in
F. Under these assumptions, our algorithms to solve (19.4) use an expected
number of £2t°() operations in F, and space for £17°(1) elements of F. This
is to be compared with standard Gaussian elimination: even if the original
matrix is sparse, during the execution of the algorithm, most of the entries
in the matrix may eventually be “filled in” with non-zero field elements,
leading to a running time of Q(¢3) operations in F, and a space requirement
of Q(¢?) elements of F. Thus, the algorithms presented here will be much
more efficient than Gaussian elimination when the matrix representing 7 is
sparse.

We hasten to point out that the algorithms presented here may be more
efficient than Gaussian elimination in other cases, as well. All that matters
is that 7 can be evaluated using o(¢?) operations in I and/or represented
using space for o(£2) elements of F'—in either case, we obtain a time and/or
space improvement over Gaussian elimination. Indeed, there are applica-
tions where the matrix of the linear map 7 may not be sparse, but never-
theless has special structure that allows it to be represented and evaluated
in subquadratic time and/or space.

We shall only present algorithms that work in two special, but important,
cases:

436 Linearly generated sequences and applications

e the first case is where 7 is invertible,

e the second case is where 7 is not invertible, § = 0, and a non-zero
solution 7 to (19.4) is required (i.e., we are looking for a non-zero
element of ker(7)).

In both cases, the key will be to use Algorithm MP in §19.3 to find the
minimal polynomial ¢ of the linearly generated sequence

S :=(ag,1,...), (a;=7B), i=0,1,...), (19.5)

where (3 is a suitably chosen element of V. From the discussion in Exam-
ple 19.3, this sequence has full rank, and so we may use Algorithm MP. We
may use M := ¢ as an upper bound on the degree of ¢ (assuming we know
nothing more about 7 and 3 that would allow us to use a smaller upper
bound). In using Algorithm MP in this application, note that we do not
want to store ay, . . ., agy_1 —if we did, we would not satisfy our stated space
bound. Instead of storing the «; in a “warehouse,” we use a “just in time”
strategy for computing them, as follows:

e In the body of the main loop of Algorithm MP, where we calculate the
values a; := 7(«;), for i = 0...2¢ — 1, we perform the computation
as follows:

a—f
for i <— 0 to 2¢ —1 do
a; — (), a— 7(a)

e In the test at the bottom of the main loop of Algorithm MP, if g =

Z?:o ngj, we compute v := g* S € V as follows:

ve—20, a—p
for j <+ 0 to k do
ve—v+gi-a, a—T(a)

Alternatively, one could use a Horner-like algorithm:

v—20
for j « k down to 0 do
veT(v)+g;- 0

With this implementation, Algorithm MP uses an expected number of O(¢?)
operations in F, an expected number of O(¢) evaluations of 7, and space
for O({) elements of F. Of course, the “warehouse” strategy is faster than
the “just in time” strategy by a constant factor, but it uses about ¢ times
as much space; thus, for large ¢, using the “just in time” strategy is a very
good time/space trade-off.

19.4 Solving sparse linear systems 437

The invertible case. Now consider the case where 7 is invertible, and
we want to solve (19.4) for a given § € V. We may as well assume that
0 # 0, since otherwise, v = 0 is the unique solution to (19.4). We proceed
as follows. First, using Algorithm MP as discussed above, compute the
minimal polynomial ¢ of the sequence S defined in (19.5), using (3 := 4. Let
p=>"", ¢;X7, where ¢, = 1 and m > 0. Then we have

cod + c17(0) + -+ e m™(0) = 0. (19.6)

We claim that ¢y # 0. To prove the claim, suppose that ¢g = 0. Then
applying 771 to (19.6), we would obtain

16 + -+ ™ (8) =0,

which would imply that ¢/X is a generating polynomial for S, contradicting
the minimality of ¢. That proves the claim.

Since cq # 0, we can apply 77! to (19.6), and solve for v = 771(§) as
follows:

vy =—cy (16 + - 4 ™ (6)).

To actually compute v, we use the same “just in time” strategy as was
used in the implementation of the computation of g x .S in Algorithm MP,
which costs O(£?) operations in F, O(f) evaluations of 7, and space for O(¥)
elements of F'.

The non-invertible case. Now consider the case where 7 is not invertible,
and we want to find non-zero vector v € V such that 7(y) = 0. The idea
is this. Suppose we choose an arbitrary, non-zero element 3 of V', and use
Algorithm MP to compute the minimal polynomial ¢ of the sequence S
defined in (19.5), using this value of 8. Let ¢ = > '", c;jXJ, where m > 0
and ¢, = 1. Then we have

cof+er(B) + - +ent™(B) = 0. (19.7)
Let
yi=cf+--- cme_l(ﬁ).

We must have v # 0, since v = 0 would imply that |¢/X]| is a non-zero
generating polynomial for S, contradicting the minimality of ¢. If it happens
that ¢ = 0, then equation (19.7) implies that 7(y) = 0, and we are done.
As before, to actually compute =y, we use the same “just in time” strategy
as was used in the implementation of the computation of g+ .S in Algorithm
MP, which costs O(£2?) operations in F, O(£) evaluations of 7, and space for
O(?) elements of F.

438 Linearly generated sequences and applications

The above approach fails if ¢y # 0. However, in this “bad” case, equation
(19.7) implies that 3 = —cy '7(7); that is, 8 € img(r). One way to avoid
such a “bad” (3 is to randomize: as 7 is not surjective, the image of 7 is a
subspace of V' of dimension strictly less than ¢, and therefore, a randomly
chosen f3 lies in the image of 7 with probability at most 1/|F|. So a simple
technique is to choose repeatedly § at random until we get a “good” .
The overall complexity of the resulting algorithm will be as required: O(¢?)
expected operations in F', O({) expected evaluations of 7, and space for O(¥)
elements of F.

As a special case of this situation, consider the problem that arose in
Chapter 16 in connection with algorithms for computing discrete logarithms
and factoring. We had to solve the following problem: given an ¢ x (¢ — 1)
matrix M with entries in a finite field F', containing 1+°() non-zero entries,
find a non-zero vector v € F1*¢ such that vM = 0. To solve this problem,
we can augment the matrix M, adding an extra column of zeros, to get an
¢ x ¢ matrix M’'. Now, let V = F'*¢ and let 7 be the F-linear map on V
that sends v € V to yM’. A non-zero solution « to the equation 7(y) = 0
will provide us with the solution to our original problem; thus, we can apply
the above technique directly, solving this problem using (2+o() expected
operations in F, and space for £11°(1) elements of F. As a side remark, in
this particular application, we can choose a “good” (3 in the above algorithm
without randomization: just choose § := (0,...,0,1), which is clearly not
in the image of 7.

19.5 Computing minimal polynomials in F[X]/(f) (II)

Let us return to the problem discussed in §18.2: F' is a field, f € F[X] is
a monic polynomial of degree ¢ > 0, and E := F[X]/(f) = Fn], where
n := [X]s; we are given an element o € E, and want to compute the minimal
polynomial ¢ € F[X] of « over F'. As discussed in Example 19.2, this problem
is equivalent to the problem of computing the minimal polynomial of the
sequence

S :=(ag,01,...) (aj:= ol i=0,1,...),

and the sequence has full rank; therefore, we can use Algorithm MP in §19.3
directly to solve this problem, assuming F' is a finite field.

If we use the “just in time” strategy in the implementation of Algorithm
MP, as was used in §19.4, we get an algorithm that computes the minimal
polynomial of o using O(¢3) expected operations in F, but space for just
O(£?) elements of F. Thus, in terms of space, this approach is far superior

19.5 Computing minimal polynomials in F[X]/(f) (II) 439

to the algorithm in §18.2, based on Gaussian elimination. In terms of time
complexity, the algorithm based on linearly generated sequences is a bit
slower than the one based on Gaussian elimination (but only by a constant
factor). However, if we use any subquadratic-time algorithm for polynomial
arithmetic (see §18.6 and §18.7), we immediately get an algorithm that runs
in subcubic time, while still using linear space. In the exercises below, you
are asked to develop an algorithm that computes the minimal polynomial
of a using just O(¢*7) operations in F, at the expense of requiring space
for O(¢'®) elements of F'—this algorithm does not rely on fast polynomial
arithmetic, and can be made even faster if such arithmetic is used.

EXERCISE 19.7. Let f € F[X] be a monic polynomial of degree ¢ > 0 over a
field F, and let E := F[X]/(f). Also, let n := [X]y € E. For computational
purposes, we assume that elements of E and Dp(FE) are represented as co-
ordinate vectors with respect to the usual “polynomial” basis 1,7, ...,1n" L.
For 3 € E, let Mg denote the S-multiplication map on E that sends o € E

to af € E, which is an F-linear map from FE into E.

(a) Show how to compute —given as input the polynomial f defining
E, along with a projection © € Dp(FE) and an element 8 € E—the
projection m o Mgz € Dr(E), using O(£?) operations in F.

(b) Show how to compute—given as input the polynomial f defining
E, along with a projection 7 € Dp(F), an element o € E, and a
parameter k > 0—all of the k values

(1), 7(c),. .., m(aF1)

using just O(kf + k'/2¢?) operations in F, and space for O(k/2()
elements of F'. Hint: use the same hint as in Exercise 18.4.

EXERCISE 19.8. Let f € F[X] be a monic polynomial over a finite field F'
of degree ¢ > 0, and let E := F[X]/(f). Show how to use the result of the
previous exercise, as well as Exercise 18.4, to get an algorithm that computes
the minimal polynomial of a € F over F using O(£%5) expected operations
in F, and space for O(¢}®) operations in F.

EXERCISE 19.9. Let f € F[X] be a monic polynomial of degree ¢ > 0 over
a field F' (not necessarily finite), and let E := F[X]/(f). Further, suppose
that f is irreducible, so that FE is itself a field. Show how to compute
the minimal polynomial of o € E over I deterministically, satisfying the
following complexity bounds:

(a) O(£3) operations in F and space for O(f) elements of F};

440 Linearly generated sequences and applications

(b) O(#2) operations in F and space for O(¢}®) elements of F.

19.6 The algebra of linear transformations (x)

Throughout this chapter, one could hear the whispers of the algebra of linear
transformations. We develop some of the aspects of this theory here, leaving
a number of details as exercises. It will not play a role in any material that
follows, but it serves to provide the reader with a “bigger picture.”

Let F be a field and V be a non-trivial F-vector space. We denote by
Lr(V) the set of all F-linear maps from V into V. Elements of Lp(V)
are called linear transformations. We can make Lz(V) into an F-vector
space by defining addition and scalar multiplication as follows: for 7,7’ €
Lp(V), define 7 + 7" to be the map that sends a € V to 7(a) 4+ 7/(); for
ce€ Fand 7€ Lp(V), define c7 to be the map that sends a € V' to cr(a).

EXERCISE 19.10. (a) Verify that with addition and scalar multiplication
defined as above, Ly (V') is an F-vector space.

(b) Suppose that V' has finite dimension ¢ > 0. By identifying elements
of L (V') with £ x ¢ matrices over F', show that Lr(V') has dimension
2.

As usual, for 7,7/ € Lp(V), the composed map, 7 o 7/ that sends a €
V to 7(7'(a)) is also an element of Lp(V) (verify). As always, function
composition is associative (i.e., for 7,7/, 7" € Lr(V), we have 7o (7' o 7") =
(1 o 7') o 7"); however, function composition is not in general commutative
(i.e., we may have 7o7’ # /o7 for some 7,7’ € LF(V)). For any 7 € Lp(V)
and an integer ¢ > 0, the map 7° (i.e., the i-fold composition of 7) is also an
element of Lz(V). Note that for any 7 € Lg(V), the map 7° is by definition
just the identity map on V.

For any 7 € Lp(V), and for any polynomial f € F[X], with f =", a;X;,
we denote by f(7) the linear transformation

f(r) = Z a;T".

EXERCISE 19.11. Verify the following properties of Lz (V). For all 7,7/, 7" €
Lrp(V), for all c € F, and all f,g € F[X]:

To(t'"+7")y=7107 +707";

—~

T+ or=7"or+7"0r;

)
)

(c) ec(tot’)=(er)o1 =710 (c1);
)

19.6 The algebra of linear transformations (*) 441

(e) f(r)+g(r)=(f+g)(7).

Under the addition operation of the vector space Lp(V'), and defining
multiplication on Lz (V') using the “o” operation, we get an algebraic struc-
ture that satisfies all the properties of Definition 9.1, with the exception of
property (v) of that definition (commutativity). Thus, we can view Lr(V)
as a non-commutative ring with unity (the identity map acts as the multi-
plicative identity).

For a fixed 7 € L (V'), we may consider the subset of Lp(V),

Fr]:={f(r): f € F[x]},

which does in fact satisfy all the properties of Definition 9.1. Moreover, we
can view I as a subring of F[r] by identifying ¢ € F with ¢70 € F[r]. With
this convention, for f € F[X], the expression f(7) has its usual meaning as
the value of f evaluated at the point 7 in the extension ring F[7] of F. Let
¢r is the minimal polynomial of 7 over F', so that F'[r] is isomorphic as an
F-algebra to F[X]/(¢-). We can also characterize ¢, as follows (verify):

if there exists a non-zero polynomial f € F[X] such that f(7) =
0, then ¢, is the monic polynomial of least degree with this
property; otherwise, ¢, = 0.

Another way to characterize ¢ is as follows (verify):
¢, is the minimal polynomial of the sequence (1, 7,72,...).

Note that ¢, is never 1—this follows from the assumption that V is
non-trivial.

It is easy to see that if V happens to be finite dimensional, with ¢ :=
dimp(V), then by Exercise 19.10, £Lr(V) has dimension ¢2. Therefore, there
must be a linear dependence among 1,7,... ,7‘52, which implies that the
minimal polynomial of 7 is non-zero with degree at most ¢2. We shall show
below that in this case, the minimal polynomial of 7 actually has degree at
most £.

For a fixed 7 € Lp(V'), we can define a “scalar multiplication” operation
®, that maps f € F[X] and a € V to

foa:=f(r)(a)eV;
that is, if f =), a; X', then

foa= Zani(a).

442 Linearly generated sequences and applications

EXERCISE 19.12. Show that the scalar multiplication ®, together with the
usual addition operation on V', makes V' into an F[X]-module; that is, show
that for all f,g € F[X] and o, § € V, we have

fO@oa)=(f9)0a, (f+tg)Oa=fOa+goa,
fola+f)=foa+fof 10a=a.

Note that each choice of 7 gives rise to a different F'[X]-module structure,
but all of these structures are extensions of the usual vector space structure,
in the sense that for all ¢ € F' and o € V, we have ¢ ® a = ca.

Now, for fixed 7 € Lp(V) and a € V, consider the F[X|-linear map
pr.a : F[X] — V that sends f € F[X] to f ® o = f(7)(c). The kernel of this
map must be a submodule, and hence an ideal, of F[X]; since every ideal
of F[X] is principal, it follows that ker(p; o) is the ideal of F[X] generated
by some polynomial ¢, ,, which we can make unique by insisting that it is
monic or zero. We call ¢, the minimal polynomial of o under 7.We
can also characterize ¢, as follows (verify):

if there exists a non-zero polynomial f € F[X] such that
f(7)(a) = 0, then ¢, the monic polynomial of least degree
with this property; otherwise, ¢ = 0.

Another way to characterize ¢, is as follows (verify):
®7.« is the minimal polynomial of the sequence
(o, 7(), T2(a), . . .).
Note that since ¢, (7) is the zero map, we have
br © a = g (7)(@) = 0,

and hence ¢, € ker(p;o), which means that ¢, | ¢-.

Now consider the image of p; o, which we shall denote by (o). As an F[X]-
module, (a); is isomorphic to F[X]/(¢ra). In particular, if ¢ is non-zero
and has degree m, then (a), is a vector space of dimension m over F'; indeed,

the vectors a, 7(a), ..., 7" 1(a) form a basis for (a), over F; moreover, m
is the smallest non-negative integer such that o, 7(«), ..., 7™(a) are linearly
dependent.

Observe that for any 5 € (a),, we have ¢, ,© [= 0; indeed, if 8 = fOa,
then

Gr0a O (fO)= (¢raf) Oa=fO(pra®a)=f00=0.

In the following three exercises, 7 is an element of Lp(V), and ® is the
associated scalar multiplication that makes V' into an F'[X]-module.

19.6 The algebra of linear transformations (*) 443

EXERCISE 19.13. Let @ € V have minimal polynomial f € F[X] under 7,
and let # € V have minimal polynomial g € F[X] under 7. Show that if
ged(f,g) =1, then

(a) <a>T N <ﬁ>7’ = {O}a and
(b) «+ 8 has minimal polynomial f - ¢ under 7.

EXERCISE 19.14. Let o € V. Let ¢ € F[X] be a monic irreducible polynomial
such that ¢° ® o = 0 but ¢° "' ® a # 0 for some integer e > 1. Show that ¢°
is the minimal polynomial of o under 7.

EXERCISE 19.15. Let o € V| and suppose that a has minimal polynomial
f € F[X] under 7, with f # 0. Let g € F[X]. Show that g ® @ has minimal
polynomial f/ged(f, g) under 7.

We are now ready to state the main result of this section, whose statement
and proof are analogous to that of Theorem 8.40:

Theorem 19.7. Let 7 € Lr(V), and suppose that T has non-zero minimal
polynomial ¢. Then there exists B € V such that the minimal polynomial of
B under T is ¢.

Proof. Let ® be the scalar multiplication associated with 7. Let ¢ =
pi' - pg be the factorization of ¢ into monic irreducible polynomials in
F[x].

First, we claim that for each ¢ = 1,...,7, there exists a; € V such that
@/pi © a; # 0. Suppose the claim were false: then for some i, we would
have ¢/p; © a = 0 for all @ € V; however, this means that (¢/p;)(7) =
0, contradicting the minimality property in the definition of the minimal
polynomial ¢. That proves the claim.

Let aiy,...,a, be as in the above claim. Then by Exercise 19.14, each
®/p;" ® a; has minimal polynomial p;" under 7. Finally, by part (b) of
Exercise 19.13, the vector

B:=0¢/p]' ©ar+ -+ ¢/pim ©
has minimal polynomial ¢ under 7. O

Theorem 19.7 says that if 7 has minimal polynomial ¢ of degree m > 0,
then there exists 5 € V such that

B,7(B),. .., 7" H(B)

are linearly independent. From this, it immediately follows that:

444 Linearly generated sequences and applications

Theorem 19.8. If V has finite dimension £ > 0, then for any 7 € Lr(V),
the minimal polynomial of T is non-zero of degree at most £.

We close this section a simple observation. Let V be an arbitrary, non-
trivial F'[X]-module with scalar multiplication ®. Restricting the scalar mul-
tiplication from F'[X] to F', we can naturally view V as an F-vector space.
Let 7: V — V be the map that sends a € V to X ® «. It is easy to see that
7 € Lr(V), and that for all polynomials f € F[X], and all « € V', we have
fO®a= f(7)(«). Thus, instead of starting with a vector space and defining
an F'[X]-module structure in terms of a given linear map, we can go the other
direction, starting from an F[X]-module and obtaining a corresponding lin-
ear map. Furthermore, using the language introduced in Examples 14.14
and 14.15, we see that the F'[X]-exponent of V is the ideal of F[X] generated
by the minimal polynomial of 7, and the F'[X]-order of any element o € V' is
the ideal of F[X] generated by the minimal polynomial of « under 7. The-
orem 19.7 says that there exists an element in V' whose F'[X]-order is equal
to the F'[X]-exponent of V', assuming the latter is non-zero.

So depending on one’s mood, one can place emphasis either on the linear
map T, or just talk about F[X]-modules without mentioning any linear maps.

EXERCISE 19.16. Let 7 € Lp(V) have non-zero minimal polynomial ¢ of
degree m, and let ¢ = p{' ---p¢" be the factorization of ¢ into monic irre-
ducible polynomials in F[X]. Let ® be the scalar multiplication associated
with 7. Show that § € V has minimal polynomial ¢ under 7 if and only if

¢/pi®B#0fori=1,...,r.

EXERCISE 19.17. Let 7 € Lp(V') have non-zero minimal polynomial ¢. Show
that 7 is an invertible map if and only if X 1 ¢.

EXERCISE 19.18. Let F' be a finite field, and let V have finite dimension
¢ >0 over F. Let 7 € Lp(V) have minimal polynomial ¢, with deg(¢) = m
(and of course, by Theorem 19.8, we have m < ¢). Suppose that aq,...,as
are randomly chosen elements of V. Let g; be the minimal polynomial of «;
under 7, for j = 1,...,s. Let @ be the probability that lem(gy,...,gs) = ¢.
The goal of this exercise is to show that @ > A?}(s), where A?(s) is as
defined in §19.3.
(a) Using Theorem 19.7 and Exercise 19.15, show that if m = ¢, then
Q = A%(s).
(b) Without the assumption that m = ¢, things are a bit more challeng-
ing. Adopting the matrix-oriented point of view discussed at the end
of §19.3, and transposing everything, show that

19.6 The algebra of linear transformations (*) 445

— there exists m € Dp(V) such that the sequence (o 7%)%°, has
minimal polynomial ¢, and

— if, for j = 1,...,s, we define h; to be the minimal polyno-
mial of the sequence (7(7%(c;)))$2,, then the probability that
lem(hy,...,hs) = ¢ is equal to A}@(s).

(c) Show that h; | g;, for j =1,...,s, and conclude that @ > A?}(s).

EXERCISE 19.19. Let f,g € F[X] with f # 0, and let h := f/gcd(f,g).
Show that ¢ - F[X]/(f) and F[X]/(h) are isomorphic as F'[X]-modules.

EXERCISE 19.20. In this exercise, you are to derive the fundamental theo-
rem of finite dimensional F[X]-modules, which is completely analogous
to the fundamental theorem of finite abelian groups. Both of these results
are really special cases of a more general decomposition theorem for mod-
ules over a principal ideal domain. Let V' be an F[X]-module. Assume that
as an F-vector space, V has finite dimension ¢ > 0, and that the F[X]-
exponent of V' is generated by the monic polynomial ¢ € F[X] (note that
1 < deg(¢) < ¢). Show that there exist monic, non-constant polynomials
®1,...,¢t € F[X] such that

o ¢ | piy1 fori=1,...,t—1, and
e V is isomorphic, as an F[X]-module, to the direct product of F[X]-
modules

V' = FIX]/(61) x - x FIX]/(1):

Moreover, show that the polynomials ¢, ..., ¢; satisfying these conditions
are uniquely determined, and that ¢, = ¢. Hint: one can just mimic the
proof of Theorem 8.44, where the exponent of a group corresponds to the
F[X]-exponent of an F[X]-module, and the order of a group element cor-
responds to the F[X]-order of an element of an F[X]-module— everything
translates rather directly, with just a few minor, technical differences, and
the previous exercise is useful in proving the uniqueness part of the theorem.

EXERCISE 19.21. Let us adopt the same assumptions and notation as in
Exercise 19.20, and let 7 € Lr(V) be the map that sends o € V to X ® a.
Further, let o : V' — V' be the isomorphism of that exercise, and let 7/ €
Lr (V') be the X-multiplication map on V.
(a) Show that c o7 =17"00.
(b) From part (a), derive the following: there exists an ordered basis for
V over F, with respect to which the matrix representing 7 is the

446 Linearly generated sequences and applications

“block diagonal” matrix

Cy
Co

Cy
where each Cj is the companion matrix of ¢; (see Example 15.1).

EXERCISE 19.22. Let us adopt the same assumptions and notation as in
Exercise 19.20.

(a) Using the result of that exercise, show that V' is isomorphic, as an
F[X]-module, to a direct product of F'[X]-modules

FX]/(p1") x -+ x F[X]/(p}"),

where the p; are monic irreducible polynomials (not necessarily dis-
tinct) and the e; are positive integers, and this direct product is
unique up to the order of the factors.

(b) Using part (a), show that there exists an ordered basis for V' over
F, with respect to which the matrix representing 7 is the “block
diagonal” matrix

T =

where each C/ is the companion matrix of p;’.
EXERCISE 19.23. Let us adopt the same assumptions and notation as in
Exercise 19.20.

(a) Suppose a € V' corresponds to ([fi]g,,---,[fi]s;) € V' under the iso-
morphism of that exercise. Show that the F[X]-order of « is generated
by the polynomial

lem(¢1/ ged(fi, ¢1), -, ¢/ ged(fi, br)).

(b) Using part (a), give a short and simple proof of the result of Exer-
cise 19.18.

19.7 Notes 447

19.7 Notes

Berlekamp [15] and Massey [60] discuss an algorithm for finding the mini-
mal polynomial of a linearly generated sequence that is closely related to the
one presented in §19.2; and which has a similar complexity. This connection
between Euclid’s algorithm and finding minimal polynomials of linearly gen-
erated sequences has been observed by many authors, including Mills [64],
Welch and Scholtz [102], and Dornstetter [35].

The algorithm presented in §19.3, is due to Wiedemann [103], as are the
algorithms for solving sparse linear systems in §19.4, as well as the statement
and proof outline of the result in Exercise 19.18.

Our proof of Theorem 19.5 is based on an exposition by Morrison [65].

Using fast matrix and polynomial arithmetic, Shoup [91] shows how to
implement the algorithms in §19.5 so as to use just O(£“T1/2) operations
in F', where w is the exponent for matrix multiplication (see §15.6), and so
(w+1)/2 < 1.7

